

العبقري

الملف نموذج اختبار تقويمي أول

موقع المناهج ← المناهج الكويتية ← الصف الحادي عشر العلمي ← رياضيات ← الفصل الثاني

المزيد من الملفات بحسب الصف الحادي عشر العلمي والمادة رياضيات في الفصل الثاني	
النموذج الاول 11 علمي(1)	1
هندسة الفضاء بالحلول في مادة الرياضيات	2
مراجعة هامة ومتوقعة في مادة الرياضيات	3
تحميل كتاب الطالب(تمارين)علمي	4
تحميل كتاب الطالب	5

2024 – 2025

الناهج الكويتية المعادي عشر علمي الحادي عشر علمي

الفصل الدراسى الثانى

نماذج الامتحان التقويمي الأول

الامتحان التقويمي الأول للرياضيات 1 للعام الدراسي 2024 / 2025 م الفصل الدراسي الثاني الشاني (8 درجات) اسم الطالب: المسئلة الموضوعية:

1 - ظلل (3) اذا كانت العبارة صحيحة وظلل (6) اذا كانت العبارة خاطئة:

2 - ظلل رمز الدائرة الدالة على الإجابة الصحيحة:

-5 هي $y = -5 \cos 2x$: سعة الدالة

حل المعادلة : z=1+6 هو : z=1+6 هو : z=1+6 هو : z=1+6 هو : z=1-6 هو : z=1-6

ثانيا: أسئلة المقال:

M(5,300°) حول الإحداثيات القطبية إلى إحداثيات ديكارتية للنقطة:

$$lpha=36^{\circ}$$
 , $eta=48^{\circ}$, $a=8~cm$:حل ΔABC حيث

للعام الدراسي 2024 / 2025 م الامتحان التقويمي الأول للرياضيات 2 الصف:11ع/ الفصل الدراسي الثاني اسم الطالب: (8 درجات) أولا: الأسئلة الموضوعية: 1 - ظلل (a) اذا كانت العبارة صحيحة وظلل (b) اذا كانت العبارة خاطئة : $egin{pmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} b \end{pmatrix} & A(-1\ ,\ 1) \end{pmatrix}$ هي: $A(\sqrt{2}\ ,\ 135^\circ)$ الإحداثيات الديكارتية للنقطة: $A(\sqrt{2}\ ,\ 135^\circ)$ $f(x) = 3tan \ 2x$ فإن: $f(x) = 3tan \ 2x$ (b) السعة =1 (c) 3 = āuul السعة =2 (d) أيس لها سعة fثانيا: أسئلة المقال:

C في مجموعة الأعداد المركبة $z^2-2z+4=0$ المعادلة: $z^2-2z+4=0$

a=7~cm , b=6~cm , $lpha=26.3^{\circ}$:حل ΔABC حيث

للعام الدراسي 2024 / 2025 م

3

الامتحان التقويمي الأول للرياضيات الفصل الدراسي الثاني

الصف:11ع/

اسم الطالب:

(8 درجات)

أولا: الأسئلة الموضوعية:

1 - ظلل (a) اذا كانت العبارة صحيحة وظلل (b) اذا كانت العبارة خاطئة:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{\sin \gamma}{c}$$
 يكون: ABC في كل مثلث

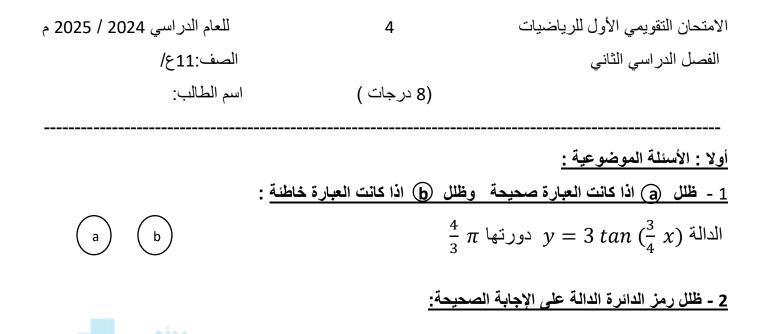
2 - ظلل رمز الدائرة الدالة على الإجابة الصحيحة:

في الدالة المثلثية: $y=-2\sin(rac{3}{5}x)$ السعة والدورة هما:

a
$$-2$$
 , $\frac{3\pi}{5}$ **b** 2 , $\frac{10\pi}{3}$

b 2,
$$\frac{10\pi}{3}$$

$$\frac{1}{2}$$
 2, $\frac{3\pi}{5}$


c 2,
$$\frac{3\pi}{5}$$
 d 2, $\frac{2\pi}{15}$

ثانيا: أسئلة المقال:

C في مجموعة الأعداد المركبة z-1+i=5-2i في مجموعة الأعداد المركبة السؤال الأول:

z=-1-i ضع ما يلي بالصورة المثلثية:

مثلث قياسات زواياه: °70°, 60°, 60°, 60° طول أصغر ضلع فيه هو 9 cm فإن طول أطول ضلع حوالي: مثلث قياسات زواياه: °70°, 60° طول أصغر ضلع خوالي: المسلم ال

ثانيا: أسئلة المقال:

C في مجموعة الأعداد المركبة $z+i=2ar{z}+1$ المعادلة: المركبة

$$z=-rac{\sqrt{3}}{2}+rac{1}{2}i$$
 خىع ما يلي بالصورة المثلثية:

الامتحان التقويمي الأول للرياضيات 5 للعام الدراسي 2024 / 2025 م الفصل الدراسي الثاني الفصل الدراسي الثاني المدالي: (8 درجات) اسم الطالب:

أولا: الأسئلة الموضوعية:

1 - ظلل (a) اذا كانت العبارة صحيحة وظلل (b) اذا كانت العبارة خاطئة :

 $y=-4\cos(6x)$ الدالة التي دورتها $rac{\pi}{3}$ وسعتها 4 يمكن أن تكون

2 - ظلل رمز الدائرة الدالة على الإجابة الصحيحة:

الصورة المثلثية للعدد المركب: $z=2-2\sqrt{3}\,i$ هي: $\theta\in[0\,,2\pi)$ هي: $z=2-2\sqrt{3}\,i$ الصورة المثلثية للعدد المركب

(a)
$$z = 4(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3})$$
 (b) $z = 4(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$

(c)
$$z = 4(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$
 (d) $z = 4(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$

ثانيا: أسئلة المقال:

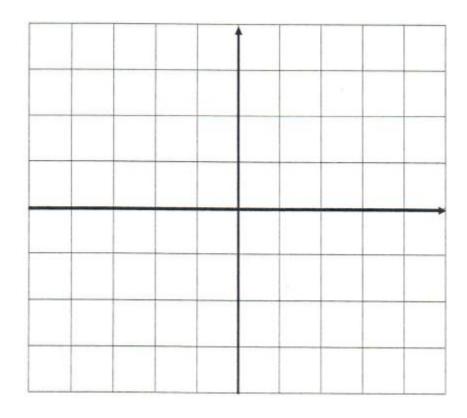
C في مجموعة الأعداد المركبة $z^2-2z+4=0$ في مجموعة الأعداد المركبة

a=5~cm , b=8~cm , $lpha=30^{\circ}$:حل ΔABC حيث

الامتحان التقويمي الأول للرياضيات 6 للعام الدراسي 2024 / 2025 م الفصل الدراسي الثاني الفصل الدراسي الثاني (8 درجات) اسم الطالب:

أولا: الأسئلة الموضوعية:

$$z_1+z_2=0$$
 الما كان $z_1+z_2=0$ المعدد z_1 فإن $z_1+z_2=0$ المعدد $z_1+z_2=0$


 $A(4,\frac{5\pi}{3})$ عند الدائرة الدائرة الدائرة الإجابة الصحيحة: الإحداثيات الديكارتية للنقطة: $A(4,\frac{5\pi}{3})$ هي:

ثانيا: أسئلة المقال:

السؤال الأول: أوجد السعة والدورة للدالة: $y = 3 \sin 2x$ ثم ارسم بيانها.

z = 5 + 12i أوجد الجذرين التربيعيين للعدد المركب:

للعام الدراسي 2024 / 2025 م

الامتحان التقويمي الأول للرياضيات الفصل الدراسي الثاني

الصف:11ع/

اسم الطالب:

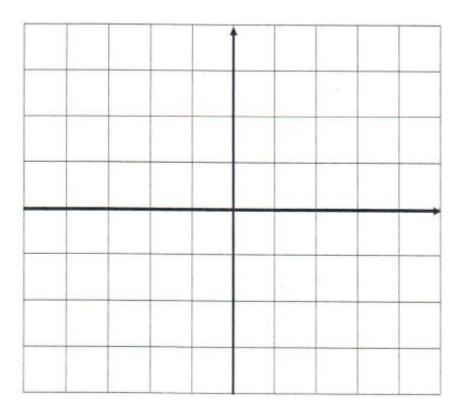
(8 درجات)

أولا: الأسئلة الموضوعية:

1 - ظلل (a) اذا كانت العبارة صحيحة وظلل (b) اذا كانت العبارة خاطئة:

$$oxed{a}$$
 $oxed{b}$ $m(\hat{c})=50^\circ$ فإن $AC=16~cm$, $AB=12~cm$, $m(\hat{B})=80^\circ$: ABC في المثلث

2 - ظلل رمز الدائرة الدالة على الإجابة الصحيحة: $(6-2i+3i^5)^2$ تساوي:


(a)
$$35 - 12i$$
 (b) $35 + 12i$ (c) $81 - 12i$

81 + 12i

ثانيا: أسئلة المقال:

السؤال الأول: أوجد السعة والدورة للدالة:
$$y = -3\cos 4x$$
 ثم ارسم بيانها. $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$y = -3\cos 4x$$

z = -3 - 4i أوجد الجذرين التربيعيين للعدد المركب:

للعام الدراسي 2024 / 2025 م

8

الامتحان التقويمي الأول للرياضيات الفصل الدراسي الثاني

الصف:11ع/

اسم الطالب:

(8 درجات)

أولا: الأسئلة الموضوعية:

1 - ظلل (a) اذا كانت العبارة صحيحة وظلل (b) اذا كانت العبارة خاطئة:

2 - ظلل رمز الدائرة الدالة على الإجابة الصحيحة: حل المعادلة z=5-2i هو:

a
$$\frac{5}{3} + \frac{1}{2}i$$
 b $\frac{5}{3} - \frac{1}{2}i$

 $\frac{23}{25} + \frac{14}{25}i$

d $\frac{23}{25} - \frac{14}{25} i$

almanahj.com/kw

ثانيا: أسئلة المقال:

 $x \in C$ حيث $3x^2 + 48 = 0$ السؤال الأول: أوجد مجموعة حل المعادلة:

حول من الإحداثيات الديكارتية إلى الإحداثيات القطبية للنقطة:

$$L(1,-\sqrt{3}) \quad , \ 0 \le \theta < 2\pi$$

